
A0-A087 079 TEXAS UIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES F/S 12/1
ON THE UNINODALITY OF HISH CONVOLUTIONS.(U)
JUN 80 P L BROCKETT, ~J H KEMPERMAN N0001R-75-C-0569

UNCUCLASSIF TEn IC-R32M



CENTER FOR
~iiC-CYBERNETIC

A~L4 N*0i STUDIES

80 7 23 12 7'



Research Report CCS 372

ON THE UNIHODALITY OF HIGH
CONVOLUTIONS

by

P.L. Brockett
J.H.B. Kemperman*

C,'

June 1980

*The University of Rochester, New York

This research was partly supported by Project NR047-021, ONR Contract
N00014-75-C-0569 with the Center for Cybernetic Studies, The University
of Texas at Austin. Reproduction in whole or in part is permitted for
any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business-Economics Building, 203E
The University of Texas at Austin

Austin, TX 78712
(512) 471-1821



On the Unimodality of High Convolutions

Patrick L. Brockett

The University of Texas

and

J. H. B. Kenperman
University of Rochester

Abstract. It has been conjectured, for any discrete 
density function

(pj) on the integers, that there exists an no  such that the n-fold con-

volution (pj n is unimodal for all n > n . A similar conjecture has

been stated for continuous densities. We present several counterexamples

to both of these conjectures.

As a positive result, it is shown for a discrete density with a conn cted

3-point integer support that its n-fold convolution is fully unimodal for all

sufficiently large n.
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1. Introduction

The limiting distributions of properly normalized sums of independent random

variables are called class L distributions, (Gnedenko and Kolmogorov 1954). If

the random variables are identically distributed then the limit law is stable.

The problem of unimodallty of the class L distributions, and the stable laws in

particular, has only recently been decided after numerous false proofs. Yamazato

(1978) established that all class L distributions are unimodal.

In view of the apparent unimodality of such limiting distributions, A. Renyi

conjectured for a discrete distribution (pj) on the integers that there is a num-

ber n0  such that the n-fold convolution (pj*n is unimodal for all n > n 0 . In

a similar vein, P. Medgyessy conjectured that for any continuous probability density

f there exists a number n0  such that the n-fold convolution f*n is unimodal for

n > n0 . See Medgyessy (1977) for both these conjectures.

If these conjectures were true then it would be easy to deduce the unimodality

of the stable laws. Both are in fact false. We present two counterexamples to the

conjecture of Medgyessy. The first is a bounded and infinitely differentiable den-

sity with the property that none of its convolutions is unimodal. We also exhibit

a density on (0,2n] which is continuous and such that each of its convolutions is

nowhere differentiable. Since unimodality implies differentiability almost every-

where, this example disproves the conjecture of Medgyessy.

As to discrete distributions, we construct one which has the nonnegative inte-

gers as its support and such that none of its convolutions is unimodal.

As a positive result, we show in the final section that for any measure
n

with 3-point support (0,1,2) the n-fold convolution n is unimodal over the

full range (0,1,...,2n), for all sufficiently large n. We conjecture the corres-

ponding result for any measure with a finite and connected support (0,1,...,N).

Already for N- 3 this is an open problem.
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2. Discrete Unimodality

In the present section, we will be concerned with probability measure V on

the integers Z. Let pj = ((J)) denote its mass at J. Such a discrete distri-

bution is called unimodal if the sequence p -Pi ) + has exactly one change of

sign. A discrete distribution (pj) is said to be strongly unimodal if (pj) * (qjl

is unimodal for any unimodal discrete distribution (qj) with connected lattice

support. As was shown by Keilson and Gerber (1971), this happens if and only if

2
pj Pj-l~J+l for all J e Z. For instance, the Poisson, geometric and binomial

densities are all strongly unimodal.

Coerexmle.

Consider integers

(2.1) a0 = 0 < a1 < a2 <... with %+I/ah + c.

Let X be a random variable with range A= (a0 , al, a2 , ... ] and put Ph=P [X =ah],

thus, Ph > 0 and ZhPh=l . Let X1 ,X 2 , ... be independent copies of X and

Sn X +X +...+X Observe that the range of Sn includes a0 = 0 as well as

arbitrarily large positive integers. Hence, S can have a discrete unimodal dis-n

tribution only if P[S n = x] > 0 for all integers x > 0.

Claim 0. Let h and x be fixed positive integers such that ah+l > nah•

Then

(2.2) P[Sn = x] a 0 whenever nah < x < ah+l

Moreover,

(2.3) P[S n = n%) - ph and P[S n - ah+I ] , nP0 Ph+l

Proof. Suppose P[S n x] > 0. Then x must be of the form

x m ma with mj e + and Zm - n.
W J ~ j iJWo 

J
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h
If mj 0 for all j > h then x < ah = mjnah. If mj > 0 for some j > h

i h ~j=0J
then x > mjaj >2 aj > ah+l This proves (2.2). A similar proof yields (2.3).

To complete the counterexample, one only needs to note that there exists a
positive integer x with nah < x < ah+l as soon as %+ > nah + 1. For each

fixed n this is true for all large h. Therefore, S is not unimodal for any n.n

One may wonder whether S with n large might be unimodal at least over itsn

support. The answer is negative in general since one can arrange that for each

large but fixed n one has

n-l

P[Sn = %+l = npO ph+, > P[Snnh] = h

n n P

for infinitely many h. For instance, Ph+l/PO > nPh O for all large h as

2
soon as Ph c /(h +1).

One may further wonder whether assuming P[X= J] > 0 for all j E + (connected

lattice support) might be sufficient. The following example shows that also here

the answer is negative.

Counterexample II.

Let X1 , X2 , ... and Y1  .Y2  .. be independent random variables such that

the Xi are i.i.d. with their common distribution the same as in Counterexample I,
n n

while the Yi are Poisson variables with mean '. Put Sn =Xi and T n Yi
n i-

Let further Zi=X +Y and Sin- Z=Sn+Tn . Observe that Z has the connected
i i n i M n + n i
+

lattice support 2Z - (0,1,2,...).

Let n be fixed and choose h so large that ah+l > nah . We have from

Claim 0 of Counterexample I that

[S' - ah+l - 1]  p [sn < n ]ah h < h ,

.4. . . . . , ..: " -,-.. .- ° " -z " - , L
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where

C h n,h =max(P[T n=J: j - ah+l - nah )

Let bhmbnh denote the smallest integer > a - I- nah  If h is sufficiently

large then bh  exceeds the mode [n] of the Poisson variable T n s hence,

C h = e'-a(n)bh /b . On the other hand,

n-1 -aP[S' ah+ 1 ]  P[Sn = h+J]P[Tn = 0 np0 Phole

Therefore,

(2.4) P[S-=ab+ -l] < P[Sn - ah+ l] for all large h

as soon as eh= o(Ph+l) as h 4', which is the same as

bh l
(a)bh/bh o(ph+,) as h + oo

For large h, bn > a where (ah) and thus [bh) increases faster thanFrn la- 2, bl h_ ah+

exponentially. It follows that (2.4) holds as soon as (Ph) does not decrease

too fast, for instance, only at an algebraic or exponential rate. In such a

situation, P[S'- J] increases infinitely often. This clearly rules out unimodality.

3. Continuous Unimodality

One can easily carry over the examples of Section 2 to the absolutely con-

tinuous case. A continuous density function f is called unimodal if there exists

a value x0  such that f is non-decreasing over (-co,x 0) and non-increasing

over (x0 , -). The following is an analogue of the above Counterexamples I and II.

Counterexmple III.

Let (pb)o satisfy Ph > 0' ZPh= 1 and let (ah) O be as in (2.1). Let

f(x) denote the density function which is obtained by distributing the mass Ph
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uniformly over (ah-l/ 2 , ah+l/ 2). Thus, f(x)= 0Ph hI(x-ah) with * as the

characteristic function of the interval (-1/2,1/2).
n

Let S n i where X1 ,X2 , ... are i.i.d. with common density f. The

density fnof S satisfies
n

(3.1) f *n(x) _ 0 for nah + n/2 < x < a+ 1 -n/2

(compare the proof of (2.2)). Since ah+l > nah+n for all large h, it follows

that f*n can never be unimodal.

If a strictly positive density is desired such that f is never unimodal,

one may start with Counterexample II and afterwards spread the mass qj =P[Z= J]

uniformly over the interval [j -1/2, j +1/2].

Or one can start with [Xi] as the i.i.d. sequence of Counterexample I. Let

further Z:f iX +Yi with the Xi  and Y independent, each Y having density g.

Thus, the Zi have density

f(x) = phg(x - a h)

h=O

This density f is infinitely differentiable as soon as each derivative of g

exists and is bounded. Let us take g as the standard normal density
2 n

cp(x) = Then Sn' - Z has density

=-/ 00it 1/2X 2
(3.2) fn(x) = n - 1/ 2  1PS =J]t((x-J)/n2

1=0

n
where Sn

= ElX

Let n be fixed and h so large that &h > 0, where A. = (ah+1 "na)/2.

It follows from (2.2) and (3.2) that

fn(ah+l -Ah) < n-1/2 c(Ah/n1/2

On the other hand, using (2.3),
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1/212 -
fun(a h+l ) n-/p[S n ah+l J(O )  (2jrn)-I/ n-I h~

One has cp(h/n 1/2) = o(ph+l) as h * o, provided (ph1  decreases only at an

exponential or algebraic rate. In this case, f n(ah+l-Ah) < fn(ah+l) for all

large h, showing that f is not unimodal.
n

Counterexample IV.

Observe that a unimodal density function is necessarily differentiable almost

everywhere. In this example we exhibit a continuous density function f supported

on [0,21r] such that the n-fold convolution f of f is nowhere differentiable
n

for every n. Actually, Bogdanowicz (1965) already showed that nearly each contin-

uous function f on [0,21f] has this property. More precisely, in the space

C[0,2A] with supremum norm the collection of f e C[0,21r] with each convolution

f nowhere differentiable is the complement of a set of first category.

Let us now exhibit an explicit density with this property. It is based on the

following result due to Freud (1962). A short proof may be found in Kahane (1964).

Theorem (Fe.ud) Let g(x) ck cosbkx) , where (bk) is a sequence of

positive integers satisfying Hadamard's lacunarity condition bk+l/bk > q > 1.

Then g being differentiable at some point implies that ck= O(bk1) as k * .

To construct our example, let f be a probability density on [0,2r] and

let fn be its n-fold convolution. Note that fn is carried by the interval

[0,2jrn]. Consider further the essentially finite sum
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+00

gn (x) = fn(x + 21h)
h=-00

Since gn(x + 2 r)= gn(x), one may regard gn also as a function on the circle

group T of the reals modulo 21. Relative to the additive group T, the function

gn is a probability density equal to the n-fold convolution of gl . The easiest

way to calculate g. is to calculate its characteristic function. For each integer

S e imXg (x)dx e im x  g(x)dx)n (S eiimx f(x)dxI nT n ST Rxd~

In other words,

(3.3)gn(x) E (ym)ne-im x

(3.3) gex -

m

as soon as

(3.4) f(x) y e-imx for 0 < x < 27r
m in~

Let us take

00

f(x)=c o -c ck cos bkx for 0 < x < 2,
k=1

while f(x)= 0, otherwise. Here, the bk are as in the above Theorem. Further
00

CO= 1/(2n) and ck > 0 (k > 1) such that kE Ck= co  Thus f is a continuous
k=l

probability density with g(0)= g(21r)= 0. It is of the form (3.4) with y0 = co

Yb = -b= -ck/2 when k > 0, while y, =0, otherwise. Thus (3.3) yields that
bk k i

(3.5) g (x)=(co)n +2 "  (-Ck)n cos bxkx

k=l

Suppose f were unimodal. Then fn is differentiable almost everywhere.

The function gn(x) restricted to (0,2n) is the superposition of the finitely

boom
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many translates fn (x+2k), (k=O,l,...,n-l), and thus would also have a derivative
nn

almost everywhere. By (3.5) and Freud's theorem, this would imply that (ck) =

o(bk I) as k + o.
kk

Consequently, if we choose bk= 2k  and Ck= c/k2 (k > 1) we have an example

of a continuous density f such that none of its convolutions f is unimodal. (Inn

fact, no convolution is anywhere differentiable.)

It is interesting to note that, for any E > 0, one can find a density f

uniformly closer than E to the standard normal density, and such that the n-fold

convolution f*n of f is not unimodal and nowhere differentiable for any n. To
E E

construct such an f , we start with a random variable X with a density f as

outlined in Counterexample IV. Since X has a compact support, it follows from

well-known local limit theorems (e.g., Petrov (1975), Theorems 7 or 15 of Ch. VII)
N

that the density hN of (Xi- N4)/(afI) is uniformly within E of the standard
i=l

normal density as soon as N is sufficiently large. Since N is linearly related

to the previous iN' this density hN is not unimodal or differentiable and neither

*nis any of its convolutions hN . Thus, the reasoning behind the original conjectures

of Re~iyi and Medgyessy is faulty. The central limit effect is much too weak for the

property of exact unimodality of high convolutions.

4. Positive Results and Conjectures

Let us now investigate what positive results can be obtained concerning the

eventual unimodality of sums of independent random variables. Also in view of the

counterexamples, we Rhall restrict our attention to an integer valued random variable

X having a finite support A with A c (0,1,...,N). Let pj=P[X=j] thus

A- (J e Z: pj > 03. We will assume that P0 > 0 and PN > 0 and further that the

members of A have their greatest common divisor equal to 1.
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Let

n
f (j) = P[ FX. = j]
n il l

be the n-fold convolution of (p9. The support of fn is precisely the n-fold

sum A n=A+A+...+A of the support A of (p. One has An c (0,1,...,nN)

and 0 c A ; nN e A n In order that f be unimodal it is at least necessaryn n n

that An be connected, that is, An= (O,l,...,nN). One has An c A n+ while

G= U A is precisely the semigroup generated by A. Hence, in order that fn n
nbe unimodal for n sufficiently large it is necessary that G be connected, that

is, C =Z =(0,1,2,...). This rules out a situation like A=(0,6,10,15) since

in this case G has the holes (1,2,3,4,5), [7,8,9), (11), (13,14), (17), (19),

(23) and (29).

Since G contains all sufficiently large integers, one easily shows that,

for large n, the support A of f has only a few holes all located at the veryn n

beginning and very end of A . One might therefore conjecture that, for n large,

f n(.) is unimodal at least over the "solid" part of A . However, even this cann n

be shown to be false. Because of that, we will restrict our attention to the case

of a connected lattice support

A = (O,1,...,N)

That is, p > 0 for J=O, 1,...,N and pj=O, otherwise. The results so far,
jJ

as well as certain numerical calculations, lead us to make the following conjecture.

Conjecture. Let (P0, PI '" PN be a finite discrete distribution with

J Pi > 0 (i= 0,1,...,N). Then the n-fold convolution fn(.) of (pj) is unimodal

for all sufficiently large n.
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If N= 1 then this convolution is a binomial law and thus always unimodal.

Nothing seems to be known for the case N > 2, not even in the symmetric case.

The conjecture, if true, would have further consequences. For instance, apply-

ing it to the discrete density Pj=c p tj with t > 0 fixed, it would follow that

also n(j)= fn(j)t j becomes unimodal in j for n > n0 (t).

For density functions we make an analogous conjecture: if f is an analytic

density on the finite interval (a,b) with only finitely many modes, then for n

sufficiently large, the n-fold convolution f of f is unimodal over the fulln

range (na,nb).

The major result of the present section is that the first conjecture is true

when N= 2.

Theorem. Let Xi (i=1,2,...) be a sequence of i.i.d. discrete random variables
n

with connected lattice support (0,1,2). Then S = iX is unimodal for all n
n

sufficiently large.

Proof. Let pi=P[X = i ] thus pi > 0 for i=0,1,2 and pi 0, otherwise.

Let fn(j) = P[S n
= J] thus

(4.1) f (j) > 0 for J= 0,l,...,2n; f (j) = 0, otherwise.

Moreover,

2
(4.2) fn+l(j) = E Pifn(j-i)

i=O

Let us introduce the ratios

j (4.3) Pn(j) = fn(J+l)/fn(J)

letting p n(J) for j < 0 and p n(J) = 0 for j > 2n. Note that unimodality

n n

"1 i iI j



of S above an integer mode mo(n) is equivalent to p~()>1for j < m 0o(n)

together with p n(J) S 1 for j > m0 (n).

Leimma 1. We have p (j +2) <! p (J) for all J.

Proof. We shall proceed by induction. The stated result is equivalent to

(4.4) f (h)fn (h +3) !< f (h +1) f (h+2) f or all h

Since f n(h) = 0 if h < 0 or h > 2n, (4.4) is obviously true if h < -1 or

h > 2n -2, and therefore for n= 1.

In view of (4.2), inequality (4.4) with n1 resplaced by n +1 is equivalent

to showing for all j

2 2 2 2
(4.5) p pr fn (Jr) Eps f n (j+3-s) p pr f n(j +lr) Z ps f nQ+2-s)

r=0 s=0 r=O s=0

We must show that (4.4) implies (4.5). Rearranging terms, we see that (4.5) is

equivalent to

2
(4. 6) 0 < FP 2f (j +l-r) f (j + 2-r) -f (j -r) f ( + 3 -r)J I + p p F -

r0 rn n n n ?<r s Jr,3j

where

(4 .7) F Jk = f n j+1f k+2 + f n (j+ 2 )f n (k+l1)f n(J)f n(k +3)-f n(j +3)f n(k)

Applying (4.4) with h= j-r, we see that the first sum in (4.6) is non-negative.

Hence, it suffices to show that Fjj~ : 0 j FJ~-2 > 0 and jlJ- > 0.

From (4.7), condition Fj ~~ > 0 reduces to

f 2(j+l1) >: f (j -1) f (j +3)
n -n n

one may as well assume that 1 < j <! 2n -3 so that f (J)f (j +2) > 0. Now,
n n

applying (4.4) with h=j and h=j -1I and then multiplying the results, one

ob t ains
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f n(J-1)fn (j + 2)f n(i)fn(J +3) S f n(j)fn (J +1)f n(j + 1)f n(j + 2).

Dividing by f n(j)fn (j +2), one obtains the desired result. Replacing j by J -1,

one also has F- > 0j-l,J..2 >-0

From (4.7), condition FJJ.2 > 0 reduces to

fn (J-2)fn(j+3) S_ fn(J-l)f n(j+2)

One may as well assume that 2 < j < 2n -3 so that fn(j)f n(j +1) > 0. Applying

(4.4) with h- j -2 and h= j and then multiplying, one obtains that

fn(j -2) fn(j +1) fn(M fn(j + 3) S_ fn(j -1) fn(Jfn( +1) fn(j + 2)

Dividing by fn(J)fn(j +l), one obtains the desired result. This completes the proof

of Lemma 1.

Remark. Lemma 1 is related to the paper "A Hurwitz matrix is totally positive",

by J.H.B. Kemperman, which has been submitted for publication.

It follows from Lemma I that pn (J)  is monotonically decreasing if j runs

through the even integers and also when j runs through the odd integers.

As to the Theorem, it suffices to prove that, for all sufficiently large n,

there exists an integer k=k(n) such that

(4.8) Pn(k- 2 ) > I ; n (k-l) > 1 ; Pn (k) < I ; Pn(k+l) < 1

For afterwards we have from Lemma 1 that p (J) . 1 for all j < k- 1 and

pn (J) < 1 for all j > k, implying that fn (.)  is unimodal about k.

In other words, it only remains to show that, for n sufficiently large, the

restriction of fn(.) to some 5-point setn
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(k - 2,k-l,k,k +l,k +2)

is nonzero and unimodal about the central value k. We will do this by using a

2
local limit theorem. In the sequel, p=EX, Cl =Var X while Yj denotes the2

J-th cumulant of X. Further, B denotes positive constant with B > I) / ( 2 a +1.

Lemma 2 For n sufficiently large, n > n0 (B), the restriction of f n(.)

to the interval lij-njl < B is unimodal about one of the two integers neighboring

the value np -y 3/(2a 2).

Proof. Let n be large but fixed and let j satisfy lj-npl S B. Further

put

(a= ll( n) ; x = (j-nj)I(a 4 )= .

By a local limit theorem for discrete distributions, (Petrov 1975, pages 207 and

139), one has

cl(2 n) /2 f(J) gn(x)e- x 2 / 2 + R (x)
n n

where

IRn(X) Cn 3 1 2

with C as a constant independent of x or n. Moreover,

gn(x) = 1+[(x33x)y3 /(6a3)]n - I / 2

+[(x 4-6x 2 + 3)Y4/(24a4) +(x6_15x 4 +45x 2 -15)(y 3 ) 2 /(72a 6 ) ]n 1  .

Since x= O(n I / 2 ) and e x 2 / 2 = I -x 2/2 +O(n2), it follows from an easy calcu-

lation that

a(2jrn)1/2 fn(j) - -x 2 /2 -xAY 3/(2a 2) + 3n 1 + O(n- 3 / 2 )
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where =y4 /(8a 4) -5(y 3 ) 2 /(24a 6 ) is a constant.

Replacing j by J + I amounts to replacing x by x + A. Therefore,

(21n)12[f n(j +l)-fn)] = -ALx+AI2+a y3/( 2 c 2) + O(n1))

Here, x (J-np)A. It follows that

f n(j+l) < f n(J) as soon as j >.n ±-1/2-y 3/(2a 2 +O(n / 2 ) .

Similarly,

f (J+l) > f (J) as soon as j < np-1/2-y 3 (2a 2 ) - O(n - / 2 )
n n3

We conclude that the restriction of fn (.) to the interval Ij-npl < B is strictly

positive and unimodal about the integer k(n) closest to the value n-y3/(2a

with one exception. Namely, there is a constant K > 0 such that for integers n

satisfying

Iu-Y1(2a2) 1/2 -k(n) < Kn " I /2

with k(n) as a (unique) integer, one can only say that the above restriction is

unimodal about one of the two values k(n) or k(n) +1.

Remark. It should be noted that, under mild side conditions, the Theorem and

its proof carry over to the case of independent random variables X1 , X2 , ... which

are not necessarily identically distributed, each having either (0,1) or (0,1,2)

as its support. In fact, all that is needed is that for n sufficiently large

there exists an integer k=k(n) such that the distribution of Sn  X I + . . +Xn

restricted to the 5-point set (k-2,k-l,k,k +1,k+2) is unimidal about k. Con-

ditions for this may be derived from local limit, theorems for sums of independent,

non-identically distributed random variables (cf. Petrov (1975)).
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